
Implementing a CFD steering
system for immersive environments

Kai-Mikael Jää-Aro

Department of Numerical Analysis and
Computer Science

Royal Institute of Technology

Contents

� Background – the VIRTUALFIRES project
� Current implementation
� Conclusions for the future

VIRTUALFIRES partners

� http://www.virtualfires.org/

� SiTu, TU Graz, Austria

� CD, Uni Leoben, Austria

� PDC, KTH, Sweden

� FIGD, FhG, Germany

� EUVE, Spain

� FDDo, Germany

� LTF, France

� CETU, France

VIRTUALFIRES – the aims

� Real- time numerical simulation of tunnel fires
� Real- time steering of simulation parameters
� Immersive visualisation
� Safety studies of future tunnels
� Scenario training for fire fighters
� (Support partners' pet projects)

Desired interface

� Users should be able to set boundary conditions
interactively in the displayed tunnel geometry

� Users should be able to interactively place fire
loads, fire- fighting equipment and other items in
the tunnel

� Users should be able to indicate events happening
at future times in a scenario (ventilation turned
on/off, fire extinguishers used, etc)

� Multiplatform – PC to supercomputer
� Ideally use identical user interfaces in CAVE, in

HMD and on desktop
� Support non-expert users
� Easily extensible interface

Further desirables

Choices made

� Small- size GUI
� Displayable on PDA for CAVE version
� Fits in HMD view
� Can be used on desktop screen

� Use COVISE as visualisation platform

COVISE

� http://www.vircinity.de/

� Modular visualisation system
� Graphical programming language
� Distributed system

� Modules on different machines
� Support for remote collaboration

� Immersive rendering module – COVER
� User- extensible

COVISE programming model

� Fairly strict dataflow, but modules can attach
messages to data

� Plugins in COVER can intercept these messages
and send responses to the originator

� Plugins can send messages to each other
� Plugins can access the scene graph

Current system design

Simulator Database

DMC ReadData

COVER

Controller

Visualiser

GUI

COVISE

Handler

User initiative

Experiences

� Using COVISE did not work out very well
� Most of the programming model had to be dropped
� Much functionality had to be reimplemented

� Yet, COVISE is not a bad system
� What happened?

Analysis

� We were locked in by an application framework.
COVISE expects data to come in at the top, be
processed and sent to a renderer.
We want to use graphics as input to the system as
well as output from it.
� COVISE did allow us to implement extensions
� But, very little of the functionality of COVISE is left

COVISE-specific problems

� The behaviour of COVISE modules is set through
module parameters
� Parameters can be interactively set by the user, by

editing values in a popup window and/or by adding
parameters to a separate Contro l panel window

� A module can, through an explicit message, allow a
COVER plugin to modify its parameter values
immersively, but only a few modules send this
message, and the rest cannot be modified, only
reimplemented.

� System in principle allows customisation, but
does not fully support it in practice.

� In our application many operations have to
communicate with each other to allow interaction

� use plugins instead of modules

But, plugins are invisible in the programming interface

� the logic of the program is hidden in parallel code

� programs are not interpreted but have to be compiled

COVISE-specific remedies

� Input ports instead of “hidden” parameters give
more flexibility when programming

� Sub-classable modules diminishes need for
reimplementation

� Input ports made available for plugins

� Plugins should not be hidden in the visual
program, they need to be made public, showing
their connections to other program elements

Better yet

� We should not be constrained by a framework
� Yet we want to use as much existing functionality

as possible from a visualisation system
� We should be able to link in visualisation functions in

our program without prejudice
� Caveat: This is (currently) difficult to do in a purely

graphical programming system

The case for open source

� There are very few general visualisation tools for
immersive environments:
AVS Express/MPE, COVISE, vGeo
� It's non- trivial to test commercial systems and get

them to work
� They are difficult to extend beyond their framework

� We need an open source platform for immersive
visualisation

Alternatives

� Currently there are two major open visualisation
packages: VTK and Open DX

� Both can be linked into external programs
� VTK has already been used for immersive

visualisation through VtkActorToPF module, but
is not as easy to program

� Open DX has graphical user interface, but no
immersive renderer/interaction module

My suggestion

� I would prefer an immersive extension to
Open DX, as it is easier for non-experts to
program and has more complete functionality

