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Abstract 
We present a highly configurable, rapid prototyping framework for immersive virtual 
environments. The framework is object oriented, event driven and has been designed with 
collaboration over networks in mind. It consists of several abstraction layers and can be used 
as a black box framework. Application behaviour is separated from graphical data and is 
specified using XML. This enables development by non-programmers and facilitates 
comparisons of different user interaction strategies. Issues regarding 3D user interaction have 
been investigated, including an efficient, context-sensitive, hierarchical extension to the 
command and control cube. The framework has been used to prototype an urban modelling 
application. 
 
Keywords: Virtual environment, 3D user interaction, rapid prototyping, configurable 
framework, authoring system, urban modelling 
 

1 Introduction 
Immersive Virtual Reality (VR) is an aid to mastering spatial complexities, by facilitating 
improved understanding of 3D data and offering new modes of interdisciplinary 
collaboration. Immersive VR is gaining usage within a range of application areas, e.g. design, 
medicine and oil and gas exploration and production. Several frameworks are available, 
commercially or as open source code, for facilitating development of VR applications. These 
frameworks offer support for basic VR functionality such as stereoscopic viewing and device 
sampling. Some of them facilitate collaboration over networks. Several frameworks come 
with a scripting environment. 

This paper presents a highly configurable, rapid prototyping framework for virtual 
environments. A central property of this framework is that the user interface and application 
behaviour are specified using the XML language. This enables implementation of VR 
applications without programming. The framework utilizes existing tools and frameworks. 
Although we currently use OpenGL Performer for graphics and CAVELib for VR device 
interfaces, these components can easily be substituted by e.g. OpenIventor and VR Juggler. 

One important motivation for developing a system facilitating easy configuration of user 
interface and application behaviour is that we are interested in comparing user interaction 
methodologies for VR in general. Challenges related to developing efficient user interfaces 
for virtual environments (VE) delay the utilization of the full potential of the VR technology 
[9], [3]. User interface design is held to be one of the great challenges within computer 
science [18]. The FAVE framework facilitates easy and rapid comparisons of different user 
interaction strategies. In the urban modelling prototype we have used these capabilities to 
experiment with different user interface elements. 



Section 2 describes some related work. Sections 3-6 present and discuss the design of the 
FAVE framework; its kernel, its configurability, interactivity and GUI library. Section 7 
describes an example application for urban modelling (Figure 1), which was implemented 
using the FAVE framework. Section 8 gives some concluding remarks. 

 

 
Figure 1: A model of the Bergen area with buildings at Kronstad (near) and downtown (far). To the right is a 
menu for importing buildings. Also shown is a spline with control points representing an editable flight path. 

 

2 Related work 
VR frameworks cover many different domains. Frameworks like CAVELib and VR Juggler 
offer support for basic VR functionality such as stereoscopic viewing and device sampling. 
The Quanta (previously CavernSoft) framework is an API for network communication, such 
an API is necessary for extending a single user VR application to a collaborative application. 
Many higher-level VR frameworks use these or similar building blocks accompanied by 
specialized graphics libraries or commercial ones like OpenGL Performer. In addition some 
frameworks come with a scripting environment, making them more flexible and configurable. 
Frameworks supporting scripting often also support the dataflow approach seen in SGI’s 
Open Inventor and in VRML 2.0. In Inventor and VRML 2.0 the flow of data between virtual 
world entities is established by creating channels or connections between different entities’ 
attribute values. An outgoing event of one object can be routed to an incoming event of 
another object. 

The GNU/MAVERIK [7] framework was developed in 1995 and has been around for 
some time. It was built from ground not using any of the above mentioned frameworks. It 
deals primarily with device sampling and graphical and spatial management and offers 
different display management structures. It has been extended to the multiuser application 
DEVA [12]. Some frameworks, e.g. VIRPI [4], focus on interaction with scientific 
simulations, possibly where simulation and visualization run on different machines. VIRPI 
has a high-level VR steering system in a scripting language and offers techniques to start, 
store, browse and replay simulations. Avango [17], Lightning [13] and Ygdrasil [11] are 

 



frameworks with support for scripting and the dataflow approach as described above. All 
three frameworks build on OpenGL Performer. Avango supports Scheme scripting, Lightning 
supports Tcl scripting and Ygdrasil uses its own scripting language. In Lightning the dataflow 
model is implemented with objects having slots that can connect to other objects’ slots. 
Analogously Avango has objects with fields, where a source field can be connected with 
another object’s field by using ‘fieldconnections’. Ygdrasil operates with messages and events 
that can be sent, received and reacted on by objects that are nodes in the scene graph. Avango 
and Ygdrasil support distributed scene graphs. Avango lets each process have a copy of the 
entire scene graph by using the reliable multicast mechanisms implemented in Ensemble [6]. 
In Ygdrasil processes store a copy of the parts of the global scene graph they ‘want’ by using 
the CavernSoft network package. The FAVE framework falls roughly into the same category 
as these three frameworks. 
 

3 System overview 
The FAVE framework is designed to be highly configurable and to allow easy prototyping of 
new applications. It is event driven and adaptable for collaborativity. The framework has a 
modular design implemented in C++ and it consists of several layers of abstraction. 

A simplified schematic layout of component dependence is depicted in Figure 2. The 
application is built on top of basic libraries for device input and graphics output such as 
CAVELib and OpenGL Performer. The design makes it easy to substitute CAVELib with for 
instance VR Juggler and facilitates use of other scene graphs than OpenGL Performer. 

 

 
Figure 2: System architecture and dependence of main components 

 
A central part of the system is the vrKernel. Its main tasks are event management and 

input device handling. To make the vrKernel independent of the libraries it uses, input devices 
are accessed through an abstract interface layer. 

The vrShell is layered on top of the vrKernel, it implements methods for XML 
configuration, user interaction, navigation, object selection and manipulation. This layer uses 
some functionality from the scene graph library (OpenGL Performer). 
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Above the vrShell is a library containing a collection of controller classes. The behaviour 
of all objects, graphical and non-graphical, is encapsulated in controller objects, they are the 
only objects capable of receiving events. A controller can be used as part of the MVC (model, 
view, controller) design pattern [10]. Each controller provides a specific functionality which 
enables it to be used as a widget or as a tool with complex behaviour (subsequently referred to 
as tool in this text). The system makes no clear distinction between these types of uses. The 
collection of controllers constitutes a library which is used to design application functionality 
and appearance. 

The top layer is the behaviour configuration, which specifies controller settings and 
relationships. This layer, although it consists entirely of XML, constitutes in a sense the actual 
application in that the vrShell acts as an interpreter of the specifications given. When a new 
application is being developed most of the work will be done on the XML behaviour 
configuration, in addition to possibly implementing new application specific controllers that 
are not part of the controller library. 

 

4 Core functionality: the vrKernel 
We refer to the core of the framework as the vrKernel. Parallels can be drawn to what a 
micro-kernel does for an operating system [7]. The vrKernel is a small C++ framework 
handling device sampling, event propagation and offering utility functions such as math 
operations for 3D graphics. Functionality for handling graphics is outside the vrKernel’s 
domain. The vrKernel maintains and administers a registry of all objects that are part of the 
event system thus assisting the developer with object deletion and management. The vrKernel 
has somewhat similar responsibilities as MAVERIK [7], AURA [13] and the Application 
Control Module of Lightning [1]. 

 

4.1 Input device handling and event system 
The vrKernel defines an input device as an object with buttons (sequence of Booleans), 
valuators (sequence of floats) and sensors (sequence of 6DOF – position and orientation). 
This general definition allows the vrKernel to handle a wide range of existing and possibly 
future input devices. An important aspect of the vrKernel is its input device abstraction layer. 
By implementing new abstraction layers, other device-sampling libraries and thus input 
devices can be used without changing any existing parts of the system. 

Our system operates with two types of events: device-events and high-level events, both 
received by controller objects. A device-event is a discrete low-level event, like a button click, 
created by an input device. A high-level event is an event carrying a command signalling a 
particular action to be performed possibly along with command parameters. 

 

4.2 Controllers 
The vrKernel offers the Controller class as a virtual base class for the programmer to subclass. 
Subclassed controllers are the objects that encapsulate the behaviour of a VR application. 
Controllers receive device-events from the vrKernel, refine them into high-level events, and 
react on high-level events sent by other controllers by performing actions such as updating 
their data model (the scene graph) and creating new high-level events. Thus when new 
application specific functionality is needed, it is sufficient to implement new controllers. 

The vrKernel has mechanisms for event propagation allowing controllers to send high-
level events to other controllers in the system via an event queue. It handles event 



subscription allowing controllers to subscribe to input devices and thereby receive device-
events. And it takes care of creating ‘tick’ events allowing controllers to subscribe to regular 
ticks. If a controller is to perform some continuous action over a period of time it will need to 
receive control regularly, and it does so by subscribing to a tick event. For instance updating a 
geometry’s transformation based on the position of some input device requires a regular tick. 
For each tick it reads the state of the input device and updates the geometry’s transformation. 
When the controller is finished updating, it unsubscribes to the tick event. 

 

4.3 Multithreading 
The vrKernel operates with two threads; the event creation thread and the event handling 
thread as shown in Figure 3. The threads communicate with each other through a thread safe 
event queue. The event creation thread creates high-level events. Such an event is generated 
after the DeviceManager in the vrKernel has polled its input devices, created device-events 
from them and given the device-events to the controllers subscribing to them. Some 
controllers will then refine a device-event into a high-level event, set a recipient controller for 
the high-level event, and put it in the vrKernel’s event queue. Since the device sampling 
happens in this thread it is important that it cycles quickly, hence the refine action of a 
controller must be swift. The event handling thread will pop an event from the queue, and 
give it to the recipient controller allowing the recipient controller to perform the described 
action. 

Main

DeviceManager

EventManager

EventQueue

spawns event creation thread

enters event handling thread

add High-level event

Controller

high
level
event

timed
event

InputDevice

poll

popped
event

Device
event

 
 

Figure 3: Event system: Main function spawns the event creation thread and then enters the event handling loop. 
The DeviceManager handles event creation and the EventManager takes care of event handling. 

The event creation thread also handles creating and sending tick events. Thus controller 
objects are being accessed from both threads. The event creation thread will only call 
controller functions that do not change their state. Consequently, no synchronization or 
locking of data in the controllers is needed. So if a high-level event requires more time to be 



handled than the time of a poll cycle, the system will not freeze. Input devices will still be 
sampled from the event creation thread, and new high-level events will be created and stored 
in the queue, waiting for the handle thread to get ready to process them.  

 

4.4 Distributivity 
The vrKernel has been designed with distributivity in mind. In particular this influenced the 
event system design, resulting in a consistent event system with a rigorous set of rules. When 
the programmer follows these rules, all data-changes that alter the system state are isolated as 
high-level events and these are the only data necessary to distribute. This means that for 
distributive VR applications to be synchronized, it is enough that they start up in the same 
state and that they receive each other’s high-level events. The result is a system allowing 
remote distributivity with low network traffic. 

Our approach differs from other solutions which might create higher network traffic such 
as using virtual pipes, each with different viewpoints [16], duplicating the shared parts of the 
scene graph [11] or using distributed shared memory (DSM) [17]. 

 

5 The vrShell 
The vrShell uses the vrKernel as an abstraction layer for handling common low-level VR 
functionality. The vrShell is a framework for building applications by using XML to describe 
application behaviour and scene graph files to describe application geometry. XML is used to 
interconnect the flow of events between controllers. This resembles VRML [19] and the XP 
part of Ygdrasil [11] except for the fact that we have separated the geometrical data 
description from the behavioural description. In cases when the vrShell does not contain all 
the behavioural elements (controllers) required for a specific application to be fully described 
in terms of XML, the new behavioural element must be implemented by subclassing the 
controller class. Implementing controllers such as widgets and tools is simplified by the 
vrShell through its library, which supports interaction features such as picking, highlighting, 
context menus and displaying state symbols and tooltip information. Since these features are 
implemented in the vrShell and not in each application using it, we hope to get consistent and 
familiar interaction behaviour between all applications built on the vrShell. 
 

5.1 Configurable behaviour 
A FAVE application consists of three distinct parts; executable code, graphical data and XML 
configuration for behaviour. The XML configuration files contain a high-level description of 
the behaviour of the application, i.e. how graphical objects respond to interaction, in terms of 
which controllers are attached to graphical objects and how these controllers communicate 
with each other. The separation of configuration and geometrical data makes it possible to use 
the same geometrical data with different behaviour configurations, or to apply a behaviour 
configuration on different geometrical datasets. The separation also reduces the dependencies 
between the application framework and the graphical library. 

The coupling between geometry and behaviour is specified through labelling various 
parts of the geometrical data. Each label identifies a controller specified in the XML 
configuration. When a geometry data file is loaded, the resulting scene graph is traversed and 
when a label is encountered a controller is instantiated according to how the label is specified 
in XML (label specification) and is attached to the corresponding sub tree in the scene graph. 
We refer to this sub tree as the controller’s geometry, and conversely we refer to the 



geometry’s controller. When a user selects this sub tree, the geometry’s controller is selected 
and receives user input. 

An XML controller label specification defines a controller type. An instance of this type 
is created for each label in the scene graph referring to it. Alternatively, a controller type can 
be declared global, in which case only one instance is created. That one instance will then be 
shared by all sub trees with labels referring to it. The label specification specifies the 
controller class, its initial values and communication settings. Thus one controller 
implementation can be instantiated several times with different settings. 

The configuration specifies how different controllers communicate with each other in 
terms of events. This communication goes through a communication manager routing events 
from a source controller to one or more recipient controllers. The XML configuration of a 
controller type includes a map from other controller types which it wants events from to what 
event that should result in for the controller, thus linking controllers by defining 
communication channels between them. An example is shown in Figure 4, where two buttons 
are defined for allowing the user to switch navigation between walking and flying. The two 
button definitions result in the instantiation of two buttoncontroller objects. The objects will 
send an event to the communication manager when selected. The communication manager 
then routes the event to the ‘NavigationController’ with event code ‘WALK’ or ‘FLY’ 
depending on which buttoncontroller sent it. Figure 6f shows the geometries of the button 
controllers as two icons in a menu. The navigation controller is not attached to any geometry. 
Instead it is specified to be instantiated independently of geometry by using the <create> tag.  

 



 
Figure 4: Connection between graphical data and XML configuration. The data file contains two labelled 
geometries. The XML label specification configures them as buttons for switching navigation method between 
walking and flying. The attributes in the commonArg tag are explained in Section 5.2. 

 
Since the communication between controllers is specified in terms of one controller type 

listening to another controller type, a special procedure is applied when both types are non-
global, i.e. there might exist more than one instance of either controller type. The 
communication manager keeps track of which instances belong together, and in this case the 
communication manager only routes events to controllers in the same instance group as the 
source controller. This makes it possible to correctly manipulate several object of the same 
type. Figure 5 illustrates the different communication patterns depending on whether sender 
and receiver types are global or non-global. 

b. The XML configuration file. 

<create>NavWandController</create> 
 
<NavigationController name="Navigation"> 
   <commonArg contextMenu="NavigationMenu" 
      toolTip=”This is the navigation controller” 
      highlightable=”true” temporary=”true”/> 
   <listen source="WalkButton" event="WALK"/> 
   <listen source="FlyButton"  event="FLY"/> 
</NavigationController> 
 
<BUTTON name="FlyButton"  global=”true”/>  
<BUTTON name="WalkButton" global=”true”/> 

#Inventor V2.1 ascii 
 
Separator { 
   Separator { 
      DEF WalkButton Rotor { on FALSE } 
      File { name "icons/sphereMan.iv" } 
   } 
 
   Separator { 
      DEF FlyButton Rotor { on FALSE } 
      File { name "icons/bird.iv" } 

   } 
} 

a. The Open Inventor data file. Rotor nodes are used for labelling geometry. 



 
Figure 5: The XML communication specification between two controller types illustrated in a results in different 
communication patterns between instances of those types depending on whether the types are global or non-
global as illustrated in b – e. 

 
The collection of controllers can be looked upon as a toolbox of behavioural elements 

used in the configuration. As new controllers are programmed, the toolbox grows more 
powerful. To use and interconnect controllers using XML, it is sufficient to know the 
controllers’ interfaces; which events they send, which events they can receive, and which 
initial values and parameter settings they take. This creates a black box framework1, which 
can be used as an authoring system, allowing non-programmers to work with development of 
application design and functionality. 

Existing tools for manipulating XML has further simplified the configuration process. 
Such tools allow the user to interact with forms generated from an XML schema describing 
the structure of a legal specification. We have created XML schemas describing each 
controller’s XML syntax. Our schemas utilize many of the sophisticated features in the 
schema language resulting in a tight verification of the XML configuration files and 
eliminating the need for the programmer to create code in the vrShell to perform structural 
checking of the XML files being parsed. In addition we made a schema transformation 
converting the XML configuration file to a cross-referenced HTML file readable by people 
not familiar with the XML syntax. 
 

5.2 Common Interaction features 
The vrShell facilitates rapid development and consistent interaction behaviour among the 
applications. For instance when a geometrical object associated with a controller is ‘pointed 
at’, the vrShell will draw a bounding box around it indicating that it is selectable (unless it 

                                                
1 “A black-box framework is one where you can reuse components by plugging them together and not 

worrying about how they accomplish their individual tasks. In contrast, white-box frameworks require an 
understanding of how the classes work so that correct subclasses can be developed.” [8], [14] 
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states in XML that it is not highlightable). This helps the user distinguish between ‘static’ 
objects and the ones that can be interacted with. 

The vrShell offers selection by ray intersection as the default selection technique, in this 
mode a selectable geometry is selected by pointing the ray at it and left-clicking. Then the 
geometry’s controller will receive a ‘select’ event and will automatically start receiving 
device-events from the input device that was used for the selection. When another controller 
is selected, the first will receive an ‘unselect’ event and stop receiving device-events and the 
new one will start receiving device-events. 

Controllers can be temporary or non-temporary. Temporary controllers will after 
selection unselect themselves as soon as their task is completed and the vrShell will give back 
control to the most recently selected non-temporary controller. This mechanism has proved 
itself useful for quickly switching among different tools and widgets because it removes the 
need to reselect the tool that was previously used, which typically would require the user to 
accurately point the ray at the geometry of a tool. 

A controller can have a context menu, which is another controller. When a controller with 
a context menu has been selected and the right button is clicked, the context menu controller 
will be selected. For instance if the first controller is non-temporary and the context menu 
controller is temporary and shows a menu, the user can interact with the menu, and when a 
menu choice is performed, the menu controller unselects itself and control returns to the 
original controller. 

A symbol can be associated with a controller. This symbol will then be visible on the 
right hand side of the wand as soon as the controller is selected and acts as a visible cue 
showing what controller is selected. As a default, the symbol shown is the controller’s 
geometry. If a controller can be in different states, it can reflect this by specifying a state 
symbol for each state. The state symbol will then be shown on top of the wand. In Figure 6e a 
slider is being turned. It is shown next to the wand with its value on top of the wand. 

Controllers can specify a tooltip. If such a controller is pointed at for a specified time it 
will send a high-level event with a tooltip text string and its position. This event can be 
targeted at a controller that displays the received text at the specified position. 

Figure 4b shows an example of XML specification of these features. 
 

6 Interaction techniques 
The toolbox of controllers on top of the vrShell implements a wide range of interaction 
techniques. Interaction techniques are typically divided into four groups: navigation, 
selection, manipulation and system control [2]. We have grouped our implemented techniques 
accordingly in this section. 

 

6.1 Navigation techniques 
Different techniques for navigation in the virtual world has been implemented. For all 
techniques collision detection can be turned on or off. 

• The default technique is flying in the direction the wand points. Flying speed is a 
linear function of the wand’s forward/backward joystick deflection, and increases 
linearly in the distance from the ground. Having maximum speed slower close to 
ground than for high altitudes has proven to be intuitive even for inexperienced users.  

• With gravity introduced one can navigate by walking on ground and inside buildings 
on floors and up stairs.  



• To quickly move from one place to another one can teleport to the point the wand ray 
intersects. The user can also set a flag so viewpoint smoothly turns 180 degrees under 
the flight resulting in a new viewpoint looking back at the previous location.  

• To get an overview of an area or geometry one can circulate around a chosen point. 
The user can adjust the viewpoint while circulating. 

• By recording and saving the path one is flying one can replay it later. This path can 
then be represented as a spline with control points, as seen in Figure 1, which can be 
manipulated by deleting, adding or moving the control points. 

 

6.2 Selection techniques 
We have implemented three different ways of performing a selection, for all three techniques 
a bounding box is drawn around the object in focus if it is selectable. 

• The most used selection technique is ray casting where a ray is drawn from the tip of 
the wand to the intersection of some geometry. The geometry is then selected (if it is 
selectable) by left clicking.  

• The second technique is ‘tabbing’. In this mode the ray disappears and by moving the 
joystick left and right, tabbing will take place between all selectable objects in the 
same menu level. By left-clicking, the object with tab focus will be selected. If the 
object has a submenu, the submenu will be shown and the tab focus will move to the 
objects in the submenu. Moving the joystick up will move the tab focus back up to the 
previous level.  

• Finally we have the technique of touching. In this selection mode the ray is replaced 
with a semi-transparent ball at the wand tip (Figure 6f). An object is selected by 
placing the ball over the object and left-clicking.  

 

6.3 Manipulation techniques  
Different ways of manipulating the VE include: 

• Moving, scaling and rotating objects; Some objects can be moved, scaled and rotated 
by first selecting them and then selecting a transformation type. How the input device 
maps to the translation factors is configurable in XML. 

• Importing and deleting geometry; geometry can be deleted, and inserted into the scene 
by selecting from a menu of importable geometries. Imported objects need not be 
static geometry, they can have behaviour associated with them. Geometry can be 
imported from a wide range of data formats. 

• Using a switch tool to turn on and off the visibility of a collection of objects. This is 
done by interacting with a geometry representing the switching tool. 

• Creating and manipulating a spline by grabbing, moving, deleting or adding new 
control points, thereby manipulating the shape of the spline. The thickness and degree 
of a spline and the radius of the control points can also be modified. 

 

6.4 System control 
System control is defined in [2] as the task of changing the interaction mode or the state of the 
system by issuing commands. These commands are issued in our system by means of 
interacting with controllers. 

The Controller class is used to implement simple widgets, such as buttons, sliders and 
menus, as well as more complicated tools, e.g. for managing editable flight paths. The 



distinction between widgets and tools is not always as well defined in virtual environments as 
in traditional desktop WIMP environments. Some controllers in the scene can be multi-
functional and act as both widgets and tools. One difference, though, is that the controllers 
acting as widgets tend to provide more elementary behaviour and will probably be reused 
across different application domains, whereas the more advanced tools are generally more 
bound to specific application domains. 

We have implemented controllers that can be used as a widget library. Figure 6 shows 
example usages of these widgets. Each instantiated widget will have a tag in the XML file 
specifying its behaviour as described in section 5. The central widgets in this library are 
buttons and toggle-buttons for performing discrete commands (the icons in Figure 6 a-d are 
buttons), sliders for specifying continuous values (Figure 6e), text windows for showing lines 
of text and menubars (Figure 6d) and C3 cuboids (Figure 6a-c) as two different ways of 
presenting a hierarchy of commands to select among. 
 

Figure 6: Various controller widgets, such as menus, sliders and buttons. 

The C3 cuboid was inspired by ideas from the Command and Control Cube in [5]. It is a 
powerful metaphor for structuring and presenting collections of commands, possibly in 
hierarchies, using very little screen area and having quick and precise navigability. We have 
called the widget a C3 cuboid due to its cuboid (3D rectangle) shape, its edges are drawn as 
lines and represent the boundaries of the C3 cuboid. The cuboid is subdivided into x× y× z 
equally sized smaller cubes, each containing a geometry representing a controller. When 
opening a C3 cuboid, touch mode for selection is activated and the cuboid is placed at the 
wand tip, then only the commands (controllers) in the plane extending from the ball and 
facing the viewer are shown. The dimensions of the cuboid, position, type and geometry of 
each command are specified in XML. Cuboids can be nested since controllers inside cuboids 
can be cuboids themselves, in addition controllers can specify cuboids as their context menus. 

 

7 Example application: Urban modelling 
For the purpose of evaluation and gaining experience the FAVE framework has been used to 
prototype an urban modelling application. The application is developed for an SGI Onyx 

a) Main menu as C3 - front vertical 
section. 

b) Main menu as C3 - middle 
vertical section. 

 
c) Main menu as C3 - back 
vertical section. 

d) Main menu as a menubar. 

 
e) A slider’s value is 
displayed in two ways.  

f) Two button representing walk and 
fly modes. 



graphics computer, but could also run on a pc or any other platform with support for the 
libraries used; CAVELib and OpenGL Performer. The application makes use of head tracking 
and a 3D mouse with three buttons and a joystick. 

The data for this application consist of terrain of an approximately 1010×  km2 area and 
contains buildings from downtown Bergen and Kronstad 3 km from downtown Bergen. The 
terrain for Kronstad is also modelled in increased resolution, this is displayed as a higher level 
of detail when the user navigates sufficiently close. The buildings in the two areas have 
different origins. Buildings at Kronstad are recreated manually from aerial photos while the 
downtown buildings are generated automatically from data in the SOSI format [15]. 

The application was developed with two goals in mind. It should be both a test case for 
the framework architecture, and an extensible prototype of an urban modelling application. 
Focus has been on user interaction techniques for navigation, selection, manipulation and 
system control. 

The application is configured with one global main menu and several context menus 
specific for various tools and objects. All menus are configured as C3 cuboids. The main 
menu has tools for navigation, for importing graphical objects, such as buildings, and for 
changing system settings. The context menus provide functionality for changing settings for 
tools and for manipulation of objects. 

Objects in the scene, such as buildings, may have menus attached to them. Such a menu 
is accessible by selecting the corresponding object. Thus, a building is both a geometric object 
part of the scene and a button for accessing functionality specific for that building. This multi-
functional role prevent a clear distinction between widgets and other objects.  

The main menu is configured in two different versions for comparison reasons. One 
version is a C3 cuboid, the other is a menubar. Both versions are accessible by selecting semi-
transparent icons located in the upper left part of the screen. These icons are fixed in device 
space coordinates making them always close to the user, and by being semi-transparent and 
not in the central view area they don’t disturb the sense of being immersed in the virtual 
environment. The C3 main menu is also a context menu attached to the ground geometry. 
This means that the main menu also can be reached by selecting the ground and right-
clicking.  

The context sensitive hierarchical C3 menu system has proven to be useful and effective. 
It is conveniently placed right in front of the user when activated, and is otherwise invisible 
and not cluttering up the view. The context sensitivity provides direct access to local 
functionality without having to navigate from the top of a menu hierarchy. The C3 selection 
system is easy to use since it does not require high precision pointing. Selection can even be 
performed without watching once the positions of the icons within the cuboid have been 
memorized. The hierarchical configuration of C3, i.e. icons in a C3 can lead to a new C3, 
provides a convenient way of grouping similar functions, and allows for an unlimited amount 
of commands. Extending the C3 to span more than 3 icons in one or more directions also 
allows for more commands. Although this impedes quick selection [5] it can be useful for 
listing many choices. 

This application has proven to be a powerful tool for presentations and explorations. It 
can be used to investigate the visual impact on new buildings or changes to existing ones. 
Figure 7 demonstrates how the user can examine the changes in the view from a window in 
one building when a neighbouring building is extended vertically. 



 

Figure 7: The view from a window before and during scaling the height of a neighbouring building. The view to 
Mt. Ulriken becomes barely visible after scaling. 

 

8 Conclusions 
This paper describes FAVE – Framework Architecture for Virtual Environments. It is a 
highly configurable rapid prototyping system. The main part of developing an application in 
this framework consists of specifying behaviour configuration in XML. XML related 
technologies, such as XML schema and XSL stylesheet, allow automatical and manual 
inspection of the XML configuration. Furthermore it is possible to use general-purpose XML 
editors that are able to generate graphical user interfaces based on XML schemas. This 
facilitates application development by non-programmers. 

The user interface is intuitive and effective. We have developed menus (C3) having a 
natural spatial position relative to the user, thus enabling quick selection. We have intuitive 
mechanisms for structuring commands. Commands can be structured around tools due to 
context menus. Large collections of commands can be structured in a hierarchical fashion 
through hierarchies of C3 cuboids. Temporary controllers automatically reselecting the 
previously used tool support a natural flow of interaction. 

The VE delivers to the user appropriate feedback with information regarding system 
mode. The user can see what tool is selected and what state the tool is in by means of state 
and substate symbols on the wand. The representation of the wand also signals what selection 
mode the system is in. Such feedback prevents mode errors; errors where users perform 
actions while believing the system is in another mode than what is the case. The VE also 
prevents the user from executing wrong commands by displaying command tooltips.  
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b) The view during scaling. State symbol for 
vertical scaling is shown. 

 
a) The original view. C3 cube for the house is shown. 
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